

Refractometric studies of liquid mixtures

Rathour Sumit¹, Tiwari Brijlesh Kumar¹, Ramakant², Shrivastava Subhash Chandra^{2*} and Srivastava Vishnu Prabhakar²

1. Department of Chemistry, C.M.P. PG College (A Constituent PG College of University of Allahabad), Prayagraj-211002, UP, INDIA

2. Department of Chemistry, University of Allahabad, Prayagraj-211002, UP, INDIA

*subhash.chem.au@gmail.com

Abstract

Refractometric investigations have been conducted on selected quaternary liquid mixtures to analyse their optical properties and intermolecular interactions at a controlled temperature of 298.15K. The studied systems include:

- a) *n*-Pentane + Toluene + *n*-Heptane + Cyclohexane
- b) *n*-Pentane + *n*-Hexane + Benzene + Toluene
- c) *n*-Heptane + *n*-Hexane + Cyclohexane + Benzene

The refractive indices of these mixtures were measured to examine the deviations from ideal behaviour, providing insights into molecular interactions, structural arrangements and composition-dependent optical properties. The results indicate a satisfactory correlation between experimental values and theoretical predictions, confirming the reliability of the refractometric approach in characterizing multicomponent liquid systems. These findings contribute to a better understanding of the optical and thermodynamic behaviour of hydrocarbon-based quaternary mixtures, which are of significant relevance in industrial and scientific applications.

Keywords: Refractive index, sound speed, molar polarization, total polarization, induced polarization, dipole movement, polar molecules and permittivity.

Introduction

A knowledge of refractive index of liquid mixtures is often desirable in many multiphase systems. Several workers^{1,2,5,6,9,10,12} have experimentally measured this property. Various refractometers are available for the accurate measurements of this property. Several workers¹¹ have measured refractive index of various types of systems and discussed their merits and demerits. Refractive index has been correlated with a number of other properties. Some of the correlations are as follows:

- density(ρ)
- Sound speed(u)

Determination of "n" from sound speed is given by:

$$\left(\frac{u}{u_o}\right)^{1/4} = n$$

$$\frac{u}{u_o} = n^4$$

$$\text{where } u_o = 345 \text{ ms}^{-1}$$

The speed in air is given by:

$$\left(\frac{u}{u_o}\right) = n^4 \quad (1)$$

From this relation the values of n can be determined through u and u_o .

Material and Methods

The molar refractions, R_m , is given by:

$$R_m = \frac{n^2 - 1}{n^2 + 2} \cdot \frac{M}{\rho} = \frac{n^2 - 1}{n^2 + 2} \cdot V_m \quad (2)$$

R_m is related to molar polarizability (α_p)

$$R_m = \frac{N\alpha_p}{3\epsilon_0} \quad (3)$$

where ϵ_0 is the permittivity free space and N is the Avogadro number. ϵ_0 is given by:

$$\epsilon_0 = 8.854 \times 10^{-12} (C^2 N^{-1} m^{-2}) \quad (4)$$

$$\epsilon_0 = 8.854 \times 10^{-12} (kg^{-1} m^{-3} s^2) \quad (5)$$

Calculation of molar polarization (P_m) and dipole moment (μ)

The molar polarization P_m is given by:

$$P_m = \frac{D-1}{D+2} \cdot \frac{M}{\rho} = \frac{4}{3} \pi N \alpha_p \quad (6)$$

If the system obeys the Clausius-Mosotti equation, the induced molar polarization (P_i) is given by:

$$P_i = \frac{D-1}{D+2} \cdot \frac{M}{\rho} = \frac{4}{3} \pi N \alpha_p \quad (7)$$

where D is dielectric constant for polar molecules, the quantity measures orientation polarization (P_o), hence the total molar polarization (P_t) is given by:

$$P_t = \frac{D-1}{D+2} \cdot \frac{M}{\rho} = P_i + P_o \quad (8)$$

P_o is given by:

$$P_o = \frac{4}{3} \pi N \left(\frac{\mu^2}{3kT} \right) \quad (9)$$

where μ is the dipole movement, k is Boltzmann constant and $\pi = 22/7$

The molar polarization P_m is given by:

$$P_m = \frac{(D-N^2)(2D-N^2)}{9D} \quad (10)$$

Experimental values of sound speed (u) of three quaternary mixtures namely; n-pentane (x_1) + toluene (x_2) + n-heptane (x_3) + cyclohexane (x_4), pentane (x_1) + n-hexane (x_2) + benzene (x_3) + toluene (x_4), n-heptane (x_1) + n-hexane (x_2) + cyclohexane (x_3) + benzene (x_4) was determined along with their percentage derivations from Junjie, Auerbach and Altenberg relation. table 1 to 4 are reported in the values of α , β , ρ and Flory's parameters \check{V} , V^* , P^* and T^* are shown in the table.

The refractive indices of the liquid mixtures were measured at different compositions and temperatures. The results show a systematic variation in refractive index with composition, suggesting molecular interactions between the components.

Results and Discussion

In general, the refractive index increased with an increase in the mole fraction of the more optically dense component. To

analyse the deviation from ideal mixing, the refractive index data were compared with values predicted using mixing rules. The deviations observed indicate non-ideal behaviour, which can be attributed to specific molecular interactions such as hydrogen bonding, dipole-dipole interactions and dispersion forces. Excess refractive index is the ideal value based on volume fraction mixing rules. Positive deviations suggest stronger interactions between unlike molecules, while negative deviations indicate weaker interactions or molecular size disparities. The effect of temperature on refractive index was also examined.

As expected, the refractive index decreased with an increase in temperature due to reduction in molecular density and weaker intermolecular forces. The rate of decrease varied depending on the nature of the components and their interactions.

The results obtained were compared with existing literature values for similar systems. The consistency of data validates the experimental approach, though slight deviations were observed, likely due to differences in purity, measurement techniques and temperature control.

Table 1
Parameters for the pure components at 298.15K

Components	α	β_r	P	P_m	C_m	\check{V}	V^*	P^*	T^*	u
n-pentane	1.6226	212.3	0.6216	0.0182	0.235662	1.3628	85.1754	4.2319	4144.84	990
Toluene	1.074	92.15	0.8627	0.0591	0.413218	1.2627	84.5867	5.5403	5032.94	1304
n-heptane	1.2589	142.4	0.6791	0.0147	0.288002	1.2985	113.638	4.4441	4642.94	1131
Cyclohexane	1.215	114	0.7734	0.0136	0.362041	1.2902	84.292	5.2895	4724.33	1252
n-hexane	1.3897	170.9	0.6552	0.0143	0.27056	1.3225	99.456	4.2403	4432.14	1076.6
Benzene	1.2265	96.7	0.8732	0.0446	0.418248	1.2924	69.2198	6.3162	4702.41	1296

Table 2

Calculated values of mole fraction (x), molar volume (V_m), molar refraction (R_m), molar polarizability (α_p), induced molar (P_i), total molar polarization (P_t) of n-pentane (X_1) + toluene (X_2) + n-heptane (X_3) + cyclohexane (X_4)

	X_1	X_2	X_3	X_4	$\alpha_p(1)$	$\alpha_p(2)$	$\alpha_p(3)$	$\alpha_p(4)$	$P_i(1)$	$P_i(2)$	$P_i(3)$	$P_i(4)$	$P_t(2)$
0.1141	0.0935	0.0735	0.056	0.0404	1.21	1.22	1.21	1.23	1.40	3.08	3.06	3.09	3.53
0.5054	0.5282	0.5474	0.5737	0.6358	2.41	2.43	2.42	2.44	2.78	2.70	2.72	2.71	2.74
0.0793	0.0959	0.112	0.1284	0.1544	1.07	1.08	1.07	1.08	1.24	1.18	1.19	1.19	1.20
115.72	116.67	116.10	117.25	124.23	27.43	27.66	27.52	27.79	31.67	24.25	24.46	24.33	24.58
21.64	21.82	21.71	21.92	24.98	26.80	27.02	26.89	27.16	30.95	26.80	27.02	26.89	27.16
					0.95	0.96	0.96	0.97	1.10	0.95	0.96	0.96	0.97
					1.18	1.19	1.19	1.20	1.37	1.18	1.19	1.19	1.20
					2.41	2.43	2.42	2.44	2.78	2.41	2.43	2.42	2.44
					3.05	3.08	3.06	3.09	3.53	2.70	2.72	2.71	2.74
					2.98	3.01	2.99	3.02	3.44	5.69	5.72	5.70	5.73
					5.17	5.17	5.17	5.17	5.17	102	102	102	102

0.13	0.0943	X₁	0.0948	0.1351	0.1794	0.1991	0.1783	0.1126	0.1071	0.1709	0.1511	0.1134
0.1373	0.0918	X₂	0.3338	0.11	0.602	0.22	0.2147	0.4267	0.4099	0.4395	0.4602	0.4948
0.2974	0.4587	X₃	0.2524	0.1484	0.1481	0.1674	0.1637	0.1137	0.0783	0.0338	0.0487	0.066
106.07	101.83	V_m	83.23	49.23	141.43	137.05	75.31	120.20	115.80	109.33	117.70	114.26
19.83	19.04	R_m(1)	15.66	9.21	26.45	25.63	14.08	22.48	21.65	20.44	22.01	21.37
21.64	20.77	R_m(2)	19.85	11.67	33.53	32.49	17.85	28.49	27.45	25.92	27.90	27.09
25.14	24.14	R_m(3)	17.55	10.32	29.65	28.73	15.79	25.20	24.27	22.92	24.67	23.95
25.14	24.14	R_m(4)	19.40	11.40	32.76	31.74	17.44	27.84	26.82	25.32	27.26	26.47
0.87	0.84	αp(1)	0.69	0.41	1.17	1.13	0.62	0.99	0.96	0.90	0.97	0.94
0.95	0.92	αp(2)	0.88	0.51	1.48	1.43	0.79	1.26	1.21	1.14	1.23	1.19
1.11	1.06	αp(3)	0.77	0.46	1.31	1.27	0.70	1.11	1.07	1.01	1.09	1.06
1.11	1.06	αp(4)	0.86	0.50	1.44	1.40	0.77	1.23	1.18	1.12	1.20	1.17
2.21	2.12	Pi(1)	1.74	1.02	2.94	2.85	1.57	2.50	2.41	2.28	2.45	2.38
2.41	2.31	Pi(2)	2.21	1.30	3.73	3.62	1.99	3.17	3.06	2.88	3.11	3.01
2.80	2.69	Pi(3)	1.95	1.15	3.30	3.20	1.76	2.80	2.70	2.55	2.75	2.67
2.80	2.69	Pi(4)	2.16	1.27	3.65	3.53	1.94	3.10	2.99	2.82	3.03	2.95
5.05	4.95	Pt(2)	4.85	3.94	6.37	6.26	4.63	5.81	5.70	5.52	5.75	5.65

Table 3
Calculated values of mole fractions (x), molar volume (V_m), molar refraction (R_m), molar polarizability (α_p), induced molar (P_i), total molar polarization (P_t) of n-pentane (X₁) + n-hexane (X₂) + benzene (X₃) + toluene (X₄)

0.13	0.0943	X₁	0.0948	0.1351	0.1794	0.1991	0.1783	0.1126	0.1071	0.1709	0.1511	0.1134
0.1373	0.0918	X₂	0.3338	0.11	0.602	0.22	0.2147	0.4267	0.4099	0.4395	0.4602	0.4948
0.2974	0.4587	X₃	0.2524	0.1484	0.1481	0.1674	0.1637	0.1137	0.0783	0.0338	0.0487	0.066
106.07	101.83	V_m	83.23	49.23	141.43	137.05	75.31	120.20	115.80	109.33	117.70	114.26
19.83	19.04	R_m(1)	15.66	9.21	26.45	25.63	14.08	22.48	21.65	20.44	22.01	21.37
21.64	20.77	R_m(2)	19.85	11.67	33.53	32.49	17.85	28.49	27.45	25.92	27.90	27.09
25.14	24.14	R_m(3)	17.55	10.32	29.65	28.73	15.79	25.20	24.27	22.92	24.67	23.95
25.14	24.14	R_m(4)	19.40	11.40	32.76	31.74	17.44	27.84	26.82	25.32	27.26	26.47
0.87	0.84	αp(1)	0.69	0.41	1.17	1.13	0.62	0.99	0.96	0.90	0.97	0.94
0.95	0.92	αp(2)	0.88	0.51	1.48	1.43	0.79	1.26	1.21	1.14	1.23	1.19
1.11	1.06	αp(3)	0.77	0.46	1.31	1.27	0.70	1.11	1.07	1.01	1.09	1.06
1.11	1.06	αp(4)	0.86	0.50	1.44	1.40	0.77	1.23	1.18	1.12	1.20	1.17
2.21	2.12	Pi(1)	1.74	1.02	2.94	2.85	1.57	2.50	2.41	2.28	2.45	2.38
2.41	2.31	Pi(2)	2.21	1.30	3.73	3.62	1.99	3.17	3.06	2.88	3.11	3.01
2.80	2.69	Pi(3)	1.95	1.15	3.30	3.20	1.76	2.80	2.70	2.55	2.75	2.67
2.80	2.69	Pi(4)	2.16	1.27	3.65	3.53	1.94	3.10	2.99	2.82	3.03	2.95
5.05	4.95	Pt(2)	4.85	3.94	6.37	6.26	4.63	5.81	5.70	5.52	5.75	5.65

0.1568	0.0524	0.066	0.1372	0.1866	0.1691	0.125	0.1819	0.1823	0.1843	0.1492	0.145	0.1278
0.0468	0.1434	0.105 ₃	0.158	0.0826	0.2041	0.1665	0.1606	0.164	0.1484	0.1384	0.1291	0.1288
0.4582	0.4201	0.703 ₃	0.5548	0.125	0.2218	0.2455	0.3842	0.3613	0.2711	0.3421	0.3376	0.3589
101.30	103.38	97.66	102.19	108.23	109.38	107.64	105.61	106.10	107.29	105.50	105.31	104.77
18.94	19.33	18.26	19.11	20.24	20.45	20.13	19.75	19.84	20.06	19.73	19.69	19.59
20.67	21.09	19.92	20.85	22.08	22.31	21.96	21.55	21.65	21.89	21.52	21.48	21.37
24.01	24.51	23.15	24.22	25.65	25.93	25.52	25.04	25.15	25.43	25.01	24.96	24.84
24.01	24.51	23.15	24.22	25.65	25.93	25.52	25.04	25.15	25.43	25.01	24.96	24.84
0.84	0.85	0.81	0.84	0.89	0.90	0.89	0.87	0.87	0.88	0.88	0.87	0.86
0.91	0.93	0.88	0.92	0.97	0.98	0.97	0.95	0.95	0.97	0.95	0.95	0.94
1.06	1.08	1.02	1.07	1.13	1.14	1.13	1.10	1.11	1.12	1.10	1.10	1.10
1.06	1.08	1.02	1.07	1.13	1.14	1.13	1.10	1.11	1.12	1.10	1.10	1.10
2.11	2.15	2.03	2.13	2.25	2.28	2.24	2.20	2.21	2.23	2.20	2.19	2.18
2.30	2.35	2.22	2.32	2.46	2.48	2.44	2.40	2.41	2.44	2.40	2.39	2.38
2.67	2.73	2.58	2.70	2.86	2.89	2.84	2.79	2.80	2.83	2.78	2.78	2.76
2.67	2.73	2.58	2.70	2.86	2.89	2.84	2.79	2.80	2.83	2.78	2.78	2.76
4.94	4.99	4.86	4.96	5.1	5.15	5.08	5.04	5.05	5.08	5.04	5.03	5.02

Table 4

Calculated values of mole fractions(x), molar volume (V_m), molar refraction (R_m), molar polarizability (α_p), induced molar (P_i), total molar polarization (P_t) of pentane (X₁), n-hexane (X₂), cyclohexane (X₃) and benzene (X₄)

0.1368	0.1649	0.1537	0.1285	0.156	0.141	0.1243	0.118	0.1006	0.0813
0.1258	0.1013	0.0925	0.1192	0.1262	0.1304	0.0466	0.0629	0.0798	0.0934
0.1507	0.5177	0.1685	0.5888	0.1513	0.3129	0.2842	0.2615	0.243	0.2238
101.13	107.93	100.53	109.09	101.67	104.57	100.06	100.13	100.03	99.71
18.91	20.18	18.80	20.40	19.01	19.55	18.71	18.72	18.70	18.65
20.63	22.02	20.51	22.25	20.74	21.33	20.41	20.43	20.41	20.34
23.43	25.00	23.29	25.27	23.55	24.22	23.18	23.19	23.17	23.10
23.97	25.58	23.83	25.86	24.10	24.79	23.72	23.74	23.71	23.64
0.83	0.89	0.83	0.90	0.84	0.86	0.83	0.83	0.82	0.82
0.91	0.97	0.90	0.98	0.91	0.94	0.90	0.90	0.90	0.90
1.03	1.10	1.03	1.11	1.04	1.07	1.02	1.02	1.02	1.02
1.06	1.13	1.05	1.14	1.06	1.09	1.05	1.05	1.05	1.04
2.10	2.25	2.09	2.27	2.12	2.18	2.08	2.08	2.08	2.08
2.30	2.45	2.28	2.48	2.31	2.37	2.27	2.27	2.27	2.26
2.61	2.78	2.59	2.81	2.62	2.70	2.58	2.58	2.57	2.57
2.67	2.85	2.65	2.88	2.68	2.76	2.64	2.64	2.63	2.62
4.94	5.09	4.92	5.12	4.95	5.01	4.91	4.91	4.9	4.9

0.181	0.0645	0.091
0.1656	0.1378	0.1721
0.2971	0.1103	0.6137
106.80	98.94	110.79
19.970	18.50	20.72
21.79	20.19	22.60
24.74	22.92	25.66
25.32	23.45	26.26
0.88	0.82	0.91
0.96	0.89	1.00
1.09	1.01	1.13
1.12	1.03	1.16
2.22	2.06	2.31
2.43	2.25	2.52
2.75	2.55	2.86
2.82	2.61	2.92
5.078	4.89	5.16

Conclusion

It can be concluded from the present study that Altenberg's relation should be used in preference to the Auerbach relation, while Junjie's relation can also be solely used in some multicomponent liquid mixtures⁴.

The refractometric study of liquid mixtures provides valuable insight into molecular interactions and deviations from ideal behaviour. The observed trends in refractive index and excess properties highlight the significance of intermolecular forces in determining optical properties of liquid mixtures. These findings can be useful in applications such as solution chemistry, optical sensor development and industrial formulation of binary and multicomponent liquid systems.

Acknowledgement

We extend our deepest gratitude to Prof. J. D. Pandey for his invaluable guidance and mentorship. His encouragement and support have played a crucial role.

References

- Acree W.E. and Bertrand G.L., Viscosity, refractive index and surface tension of multicomponent systems: mathematical representation and estimation from data for binary systems, *Journal of Solution Chemistry*, **12**, 755-762 (1983)
- Aminabhavi T.M. and Munk P., Excess polarizability and volume of mixing and their effect on the partial specific volume and the refractive increment of polymers in mixed solvents, *Macromolecules*, **12**(6), 1186-1194 (1979)
- Brocos P., Piñeiro Á., Bravo R. and Amigo A., Refractive indices, molar volumes and molar refractions of binary liquid mixtures: concepts and correlations, *Physical Chemistry Chemical Physics*, **5**(3), 550-557 (2003)
- Dey R., Chattopadhyay A., Sharma A.K. and Pandey J.D., Study of excess thermodynamic properties of multicomponent liquid mixtures, *Journal of Molecular Liquids*, **147**(3), 155-161 (2009)
- Heller W., Remarks on refractive index mixture rules, *The Journal of Physical Chemistry*, **69**(4), 1123-1129 (1965)
- Oster G., The scattering of light and its applications to chemistry, *Chemical Reviews*, **43**(2), 319-365 (1948)
- Pandey J.D., Jain P. and Vyas V., Speed of sound, viscosity and refractive index of multicomponent systems: analysis of experimental data from the Bertrand-Acree-Burchfield equation, *Canadian Journal of Chemistry*, **72**(12), 2486-2492 (1994)
- Pandey J.D., Pant N., Agrawal N. and Shikha, Ultrasonic velocity in quaternary liquid mixtures, *Acta Acustica united with Acustica*, **68**, 225 (1989)
- Pandey J.D., Shukla A.K., Gupta S. and Pandey S., Ultrasonic velocity and refractive index of multicomponent systems, *Fluid Phase Equilibria*, **103**(2), 285-299 (1995)
- Pandey J.D., Shukla A.K., Shukla R.K. and Rai R.D., Application of Refractive Index Mixing Rules in the Analysis of Binary Liquid Mixtures, *Indian Journal of Chemistry*, **27**A, 336-337 (1988)
- Pandey J.D., Shukla A.K., Shukla R.K. and Rai R.D., Prediction of refractive index of quaternary liquid mixtures, *Physics and Chemistry of Liquids: An International Journal*, **18**(4), 337-348 (1988)
- Pandey J.D., Vyas V., Jain P., Dubey G.P., Tripathi N. and Dey R., Speed of sound, viscosity and refractive index of multicomponent systems: theoretical predictions from the properties of pure components, *Journal of Molecular Liquids*, **81**(2), 123-133 (1999).

(Received 21st March 2025, accepted 23rd April 2025)